If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+5n-500=0
a = 1; b = 5; c = -500;
Δ = b2-4ac
Δ = 52-4·1·(-500)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-45}{2*1}=\frac{-50}{2} =-25 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+45}{2*1}=\frac{40}{2} =20 $
| (2x+5)(x-3)(3x+1)=39 | | t=1/3=1/3 | | 24=8(2+4x) | | 3(8+8n)=192 | | -x-2x+3x=1 | | (2x)(2x)8=28 | | 71+8x+45=180 | | 5y−1=-10+8y | | 7d-8+6=-26 | | x+x+2x=8 | | 46-2r+1=3r-5(r-2) | | 160+x+3x=90 | | 4(x-7)=2(2x-14) | | 0.4x=X-423000 | | 12(3x-2)=56 | | 4m-2=m | | 9x+17=9x+21 | | X-8=30+3x | | x=(2x+45) | | 2*4.6=g | | 8(2x+3)=19 | | 420=(10+x) | | -3x+7=-11-5x | | 12-2×5=r | | 2m+16=6m-4 | | 3(2x−3)=4x−5 | | n-8=2/3 | | 2(x×20)=90 | | w(3w+4)=24 | | 6u=2 | | 6y+10=114 | | 3u+7=-14 |